Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

نویسندگان

  • Mounir Bouabid
  • Mourad Magherbi
  • Nejib Hidouri
  • Ammar Ben Brahim
چکیده

Natural convection in an inclined rectangular cavity filled with air is numerically investigated. The cavity is heated and cooled along the active walls whereas the two other walls of the cavity are adiabatic. Entropy generation due to heat transfer and fluid friction has been determined in transient state for laminar natural convection by solving numerically: the continuity, momentum and energy equations, using a Control Volume Finite Element Method. The structure of the studied flows depends on four dimensionless parameters which are: the thermal Grashof number, the inclination angle, the irreversibility distribution ratio and the aspect ratio of the cavity. The obtained results show that entropy generation tends towards asymptotic values for lower thermal Grashof number values, whereas it takes an oscillative behavior for higher values of thermal Grashof number. Transient entropy generation increases towards a maximum value, then decreases asymptotically to a constant value that depends on aspect ratio of the enclosure. Entropy generation increases with the increase of thermal Grashof number, irreversibility distribution ratio and aspect ratio of the cavity. Bejan number is used to measure the predominance of either thermal or viscous irreversibility. At local level, irreversibility charts show that entropy generation is mainly localized on bottom corner of the left heated wall and upper corner of the right cooled wall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Nanofluid Mixed Convection and Entropy Generation in an Inclined Ventilating Cavity

This paper presents results of a numerical study of mixed convection and entropy generation of Cu–water nanofluid in a square ventilating cavity at different inclination angles. Except a piece of bottom wall with a uniform heat flux, all of the cavity walls are insulated. The inlet port is placed at the bottom of the left wall and the outlet port is positioned at the top of the right wall....

متن کامل

Lattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection

The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...

متن کامل

MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure

Natural convection heat transfer has many applications in different fields of industry; such as cooling industries, electronic transformer devices and ventilation equipment; due to simple process, economic advantage, low noise and renewed retrieval. Recently, heat transfer of nanofluids have been considered because of higher thermal conductivity coefficient compared with those of ordinary fluid...

متن کامل

Interaction of laminar natural convection and radiation in an inclined square cavity containing participating gases

Two-dimensional numerical study of flow and temperature fields for laminar natural convection and radiation in the inclined cavity is performed in the present work. The walls of the square cavity are assumed kept at constant temperatures. An absorbing, emitting, and scattering gray medium is enclosed by the opaque and diffusely emitting walls. The set of governing equations, including conservat...

متن کامل

Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity

The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011